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ABSTRACT

This paper describes twe alternative approaches (modified reverse shooting and forward
shooting} for solving the time-path of a representative agent model follewing an excgenous shock. In
particular, reverse shooting is demaonstrably better for solving part of the model but must be modified

before it can be used to solve the full model.
shooting can be used to solve both part and full mnodels

1. INTRODUCTION

In this paper we consider the
computational aspects of solving a well-known
representative  agent model (Matsuyama,
19873, which has a nomber of important
dynamic properties. These properties have
significant implications, common to a range of
macroeconomic models, for computing the
model solution,

Firstly the model has a number of stable
and unstable trajectories so that it is likely to
be complicated to solve the model for a stable
solution. The economy is initially at a stable
steady-state equilibrium, and when shocked
by, say, an excgenous change in world interest
rates, then it moves fo a stable frajectory
leading to a new steady-state equilibrium. The
movernent (o the new equilibrium is assumed
to come about a8 a consequence of optimising
behaviour of the agents in the model. In the
model, certain variables jump’ instantaneously
after the shock, and force the ecoromy onto
the trajectory leading to the stable equilibsium.

A second property of the model is that it 1s
nonlinsar with nenlinearities arising as a direct
conseguence of optimising behaviour by the
representative agents. The usual approach is
to linearise the model in the neighbourhood of
the steady-state and then sclve the linearised
model.  This approach can be particularly
unreliable if the jumps’ required fo bring the
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On the other hand. an unmodified form of forward

economy back onto a  stable
particularly large.

These properties, especially the property
of jumps’ to the stable path, introduce some

interesting challenges o solving the model.

path  are

2. THE MODEL

The chesen model is a real model of a
small open economy in a cne-product world.
The economy is assumed to be so small in the
international market for tradeable goods that it
is a price-iaker in the market for foreign
exchange. Agenis in the economy also face
perfect capital markets and a given world
interest rate, r.

There are four sectors in this economy: the
corporate sector, the household sector, the
government sector and the external sector.
These four sectors can be aggregated to yield a
model of a small open economy given by the
following set of equations:

g=1r-blA(g)* lig - Fy (1a)
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wherg
F=FEL)= ak “L"% = output of the firm;
K = real capital stock;

I. =1 = demand for labour;

¢ = uverage (and marginal) Tobin's g;

o ~1
Ayl = ;
2bg
C = real aggregate consumption;
r = real world interest rate (assumed
£X0genous);

p = instantaneous probability of death per unit
time for representative consumers;

& = consumer’s rate of time preference;

D = averseas debt;

B = domestic holdings of government bonds;

G government  expenditure  (assumed
exogenous and fixed).

There are four endogencus variables in the
model, given by g, X, C and D. The other
parameters and variables given by p, &, 1, b, G
and B are exogenocusly fixed. All variables and
parameters as well as the functional form of
A{g) have been defined above.

Throughout this paper it will be assumed
that the model has been calibrated using
plausible parameter values. The objective of
this paper 1s then to find a suitable solution
approach that will define the wajectory of a
stable No-Ponvzi game solution.

Dynamic properties of linearised model

Linearising the  model in the
neighbourhood of the steady state yields the
following fourth-order linear dynamic system
with an asterisk indicating a corresponding
steady-state value.
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Expressing the linearised model in this
way clearly indicates that the model has a
block-recursive structure, where the dynamics
of g and K can be solved independently of the
dynamics of C and D. This means that the
dynamic model can be solved in two steps, first
solving the investment sub-model, which
defines a second-order system in ¢ and K. The
full model can then be solved by substituting

solutions for g and K into the ' and D

equations and then solving for the second-order
system in C and D. This two-step solution
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approach can also be applied to the original
{non-linear) model given by equations ia -id.
A general idea about the stability
properties of the eriginal (non-linear) model
can be obtained by examining the stability
properties of the linearised system.  The
eigenvalues for this system are given by:

rt
Ay Ay =
A=r+p (3b)
Ay =r—6-p (3¢

Since Fpp <0, equation 3a defines two
real-vafued eigenvalues, one positive and one
negative.  Henceforth, it assumed  that
Ayzr=0>A4,. Also, if it is assumed that
b<r<tbtp Ay >0 4,.

assuming that A, #4,, there are twog real-

15

then Then,

valued positive eigenvalues given by A, and
As, and two distinct real-valued negative
eigenvalues, given by A, and A,.

Thus both the investment sub-model and
the C and D components of the full model will
have one positive and one negative cigenvalue,
thereby exhibiting the property of saddle-path
instability. As a consequence, following an
exogenous shock to the system, it will he
necessary for one of the ¥ and g variables and
one of the C and D variables to jump
instantaneously 50 as to ensure stability of the
solution. Since K and D are stock variables,
which cannot jump instantaneously in this
model, it is appropriate that g and C should be
the jump variables. These properties of the
linearised model carry aver to the original
(non-linear} model.

3. SOLVING THE INVESTMENT SUB-
MODEL

The mvestment sub-model s given by
equations la and tb, with the comesponding
linearised model being given by:

al_| !
HeLs
2h

As demonstrated above, this second-order
dynamic system has two eigenvalues, given by
equation 3a. Hence the linearised system has
two  real-valued eigenvalues given by
Ay > r>0> A4, thersby exhibiting the property

— Fry
0

q-q

(4)
K-K

of saddle-path instability.



Solutions to the investment sub-modei
starting from a range of initial conditions can
be used to derive a phase diagram for the
dypamics of the investment sub-model of the
original (non-linear} model. The differential
equations la and b that define the investment
sub-model are non-hnear. For this reason, at
each set of initial conditions, a variable step
size Runge-Kutta  algorithm  provides  an
appropriate solution method.

Ztie Forle for Nongnaar Modal

FIGURE 1
SAMPLE PHASE DIAGRAM
INVESTMENT SUB-MODEL

Figure | shows saddle-path dynamics
derived in this way using parameter values as
detailed in the Appendix. These dynamics
have similar saddle-path stability properties to
those derived above for the linearised model.

Solving the model using reverse shooting

As a consequence of the saddle-path
property, the numeric problem is to find the
initial conditions for q, given that both the
initial condition for K and the terminal
conditions for beth  variables are  known.
Sotving the investment sub-model is then
equivalent to solving the following problem.

Find g(0) subject to:

g=flg.K) (Sa)
K =g(g. K) (5b)
Kih=K, (5¢)
GTy=q +e, (5d}
K=K +&, (5¢)

where T is some (exogenously given) large
number representing the terminal point for time
and £, are small error terms that are

and £,

‘tlose enough’ to zero,
This problem can be solved using a
solution approach, which is referred to in this

paper as reverse shooting. The aim of this
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approach is to find the stable trajectories of the
mode] and generate the stable arms in {q, K)
phase space. This approach makes use of the
feature that time can be abstracted from the
solution ot the model. The stable arms

forwards in time will become the unstable arms

with time going backwards, The same will
apply for the unstable arms, with reverse tme
making them the stable arms. This approach
finds the forward-stable arms by finding the
unstable arms in reverse time (backward-
unstable arms). This motivates the word
reverse i the name for the approach.

The approach also use
separalrix property of saddles (Khalil, 1996).
The stable trajectories from a saddie form a
separalrix so that the phase plane of the model
1s divided 1nto four separate regions. Soluttons
always remain in one and only one region.
Choosing a solution close o the boundary of
one of these regions will ensure that the
solution will remain close to the boundary.
Choosing a backward-unsiable solution close
to the boundary will provide a time-path for the
forward-stable solution {stable arm).

Using this property and the fact that any
solution that is close to the steady-state
equilibrium s close to all four boundaries,
linearisation can be heipful in the generation of
the stable trajectories for a non-linear model.
From the linearisation of the investment sub-
model at the steady state, the eigenvalues are
such that A, >0>24,. The coresponding
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eigenvectors are denoted by v{A,)and v(A,).
The forward-stable trajeciories of the non-
linear mode! will be tangent to the forward-
stable elgenvector, v{A,), as the trajectories
approach the steady state. Similarily, (he
forward-unstable trajectories will be tangent to
the forward-unstable eigenvector. v(4;}, as
they approach the steady state. These
properties allow a approach for finding the
forward-stable arms of the investment sub-
model by using reverse time and choosing
imitial conditions so that £, and £, are close

w zero and to the forward-stable
glgenvector.

Figure 2 shows the stable arms for the
linearised and the original (non-lingar} model.
These stable arms have been derived using the
reverse  shooting approach and the same
parameter values as Figure [, Once the stable
arm (or forward-stable trajectory} has been
determined in this manner, initial values for
gy can be obtained by reading the
corresponding value of g(0) along the stable
arm for the initial condition K(0),

tangent



Stihle Amms of Linaar andt Nanlingar Models

FIGURE 2
SAMPLE STABLE ARMS
LINEARISED AND ORIGINAL (NON-
LINEAR) MODELS

INVESTMENT SUB-MODEL

o7 08

Solving the model using forward shooting

Another appreach is to use forward
shooting {Burden and Faires, 1993; Judd,
1998), The general approach with forward
shooting is to guess the unknown initial
condition, solve the model as an initial value
problem and see if the terminal conditions to
the initial value problem are close enough to
the steady-state equilibrium.

To solve the investment sub-model, K(0)
is given and the shooting approach uses an
initial guess for the initial condition of q(0).
This turns the problem into an initial value
problem, which will generate terminal values,
q(T) and K(T). The aim of the shooling
approach is to find the particular g{0) such that
G(T) and K(T) are Tlose enough’ to q:‘: and

K". Once again, a Runge-Kutta algorithm
provides an appropriate solution method for
solving the differential equations. A simplex
algorithm (or a Newton algorithm) provides a
suitable way to search for the appropriaie
initial conditions.

A problem with this approach is that it is
necessary to generate multiple solutions to the
underlying differential equation. This is in
stark contrast to the reverse shooting approach,
which requires only one solution of the
differential equation to provide a definitive
solution for each stable arm.

4. SOLVING THE FULL MODEL
Solving the full model, given by equations

la-1d, can be summarised by the following
problem. Find q(0} and C(0) subject to:
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g=flg.K) (6a)
K =glg.K) (6h)
C=hg,K,C,D) (6¢)
D=jig.K.C.D) (6d)
K@) =K, (6e)
DY = D, (6f)
@T=q +¢, (62)
K(Ty=K" +e¢, (6h}
C=C" +e, (61)
DTy =" +¢g, (6)

As before, T is some (exogenously given) large
number representing the terminai point for time
and each &; is a small error term that is close

enough’to zero.

Specification of equations 6a-6d clearly
demonstrates the block-recursive structure of
the model. As a consequence of this structure
the dynamics of g and K can be solved
independently of the dvnamics of C and D.

Solving the model using « modified version
of reverse shooting

It is generally not possible to solve the full
model using reverse shooting. The primary
reason for this is that there is no way of
ensuring that the path derived using this

approach will pass through K, and Dy at the

sarrle paint in time. However, at least for the
chosen model, it is possible o modify the
reverse  shooting  appreach  so  that  an
appropriate solution is derived.

The modified approach uses the block
recursive structure of the chosen model, which
allows for a separation of the model into two
sub-models. These sub-models can be soived
sequentially. Each sub-model has two
endogenous variables, and each sub-mode! has
the saddle-path property, Numeric solutions of
the first sub-model (the investment sub-model)
are initially used to estimate the stahie arm of
tis saddle-path. Solutions along this stable arm
are then used as exogenous in the solution of
the second sub-model {defining the dynamics
of C and D), allowiag calculation of the stable
arm for the full model.

Once solutions of q and K have been
determined, the solutions for these variables
can be taken as exogencus, thus reducing the
full model to the second-order dynamical
system in C and D, given by equations ic and
td. This can be further reduced to a system of
equations of the form:



x(t) = Ax(t)+b(r) (7

where ¢ and & denote solutions for g and K

derived from the investment sub-model, and
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The solution to this system of equations is then
given by:

0
=Pe®|| I~
%x(t) e {:7J

where

L]

3
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Ay=r+p>0, Ay=r-6-p<0

]
and D=P AP = A »
0 A
Ayt -
o le™ 3! p —-8-p
g = P= .
0 o™ | !

The solution to equation 8 can be derived
using an appropriate numeric Guadrature
aigorithm such as the wapezoidal rule or
Simpson’s rule. The constant, Z, can then be
chosen consistent with the initial value for D,
thus ensuring an appropriate initial jump in C.

This modified reverse shooting approach,
like the reverse shooting approach for the
investment sub-model, has the advantage that
the solution can be derived with one pass of the
data.  This is uniike the forward shooting
approach, which requires the generation of
multiple solutions. The disadvantage of the
modified approach is that, because it depends
on a particular property of the model (the block
recursive structure), it does not have the
universal applicability of the forward shooting
approach discussed below,

Solving the model using forward shooting
Unlike reverse shooting approach, which

requires significant changes to solve the full
maodel, the forward shooting approach can be
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extended to the full model without significant
moditication.  The general approach with
forward shooting is substantially unchanged;
guess the unknown initial conditions, solve the
mode/ as an initial value problem and see if the
terminal conditions to the initial value problem
are  close  enough  tw  the  steady-state
equilibrium, In the full model, K(O) and D)
are given and the forward shooting approach
uses initial guesses for both (03 and C(O).
This turns the problem into an initial value
problem, which will generate corresponding
terminal values, g(T}, K(T), C(T) and D{T). In
this case, the aim iy to find particular values for
q{0) and C(0) so that the terminal values are
close enough’to ¢ K. C" and D". This can
be achieved by searching over a grid of initial
values for g and C using a simplex algorithm or
a Newton algorithm.

5. NUMERICAL ISSUES

One of the central issues that arise in
gvaluating the two approaches is the numerical
accuracy of each approach.  The reverse
sheoting approach uses nemerical techniques
to solve an initial value problem for the
investment sub-model and then uses a numeric
quadrature algorithm to solve the larger model.
The forward shooting approach uses numeric
search procedures to find the unknown initial
conditions with an initial value problem for the
full (four endogenous variable) model within
the search.

In both approaches, initial value problems
for a aoalinear erdinary differential equation
must he solved. In the reverse shooting
approach, the initial value problem is solved
twice for the investment sub-model, with initial
values close to the steady-state and using
reverse time. One solution gives the trajectory
of the stable arm on one side of the steady-state
and the the other solution gives the siable arm
on the other side of the steady-state.

When each of these is implemented in a
numerical initial value problem solver, the
solver is solving an initial value problem that
explodes over (reverse) time, Truncation and
round-off errors will be magnified by this
process. To minimise these errors a variable
step-size Runge-Kutta can be used.

The forward shooting approach involves
multiple solutions to initial value problems for
each stable arm. In this case the initial value
problems are forward in time. The basic
underiying approach is to find the unknown
initial conditions such that the difference
between the terminal conditions for the initial



value problemy are and the known terminal
conditions are Tlose enough’ to zerc. This
involves a numerical minimisation procedure
{such as Newton's method) te find the uaknown
initial conditions with the initial value problem
embedded within it.

One issue with the forward shooting
approach 1s that the separatrix property of the
model will make it difficult to get close to the
steady-stale as trajectories will tend to diverge
from the steady-state. This means that small
differences in the initial conditions can make
large differences in the terminal conditions,
which increases the difficulty of the numeric
search procedure. Numeric errors introduced
by the search procedure and by the initial value
problem solver will be magnified by this
process. To minimise errors introduced by the
numeric methods, a good initial value problem
solver (such as a Runge Kutta) and a robust
search routine should be used.

The modified reverse shooting approach
also incorporates a numeric quadrature routine
to solve the integral in equation 8. This routine
will introduce truncation errors.  The integral
will also include errors introduced from the vse
of an initial value problem to solve the
investment sub-model.  Again, an accurate
numeric integration technique will help to
reduce these errors.

While numeric issues are important in the
solution of a model such as this, the primary
interest is to obtain approxunations that
indicate how the economy evoives following an
excgencus shock. For such guestions, it is not
necessary  to o derive aumerically  exact
solutions.  Under these circumstances, precise
numerical accuracy of the solution approaches
is not of primary concern.

6. CONCLUSION

This paper has described two alternative
techniques (modified reverse shooting and
forward shooting) for solving the time-path of
a representative agent model following an
exogenous shock.

The modified reverse shooting approach
requires the solution of a single initial value
problem: followed by numerical integratios.
This will require less computational resources
than the forward shooting approach, which
requires a {difficult) search incorporating the
solation of an initial value problem at each
step in the search. For ease of computation the
reverse  shooting  approach  is  clearly
prelerable.

However, the modified reverse shooting
approach makes use of a specific feature of the

model - the fact that the model is block
recursive so that the investment sub-model can
be solved independently of the full model.
This approach shows how using a property of
the model can significantly improve the
computational effort required to solve the
model.

On the other hand, the forward shooting
approach is a more general procedure. It can
be used for a wider range of models than the
reverse shooting approach.

APPENDIX

The parameter values underlying Figures |
and 2 are given in the following table.
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Parameler Value
r 0.5
a i
& 3
o 0.3
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